Note_Fem_C3D8单元公式
单元几何

单元使用八节点,每个节点有三个平移自由度; 局部坐标使用(r,s,t)坐标系,r,s,t取值范围-1到+1;使用等参数单元推导刚度矩阵

- Hexahedron (brick) element faces
Face 1 1 – 2 – 3 – 4 face
Face 2 5 – 8 – 7 – 6 face
Face 3 1 – 5 – 6 – 2 face
Face 4 2 – 6 – 7 – 3 face
Face 5 3 – 7 – 8 – 4 face
Face 6 4 – 8 – 5 – 1 face

单元刚度矩阵Ke
节点形函数为,ri,si,ti是节点i的(r,s,t)坐标值:

几何插值:



位移场插值:

参考abaqus理论手册,一阶六面体也是用这个插值函数:

应变分量推导:


节点的应变微分算子为:

使用链式法则推掉形函数对局部坐标的微分:

J是雅可比矩阵,形式为:

J进一步分解:

形函数对r,s,t的偏导:

至此B矩阵推导完毕
采用各向同性材料,则弹性矩阵为:


单元刚度矩阵Ke的公式为:

完全积分方案:每个方向上使用2个积分点进行积分,满足精确积分,共有8个积分点进行数值积分。

单元质量矩阵
推导公式参见《计算固体力学》page289
集中质量矩阵的思路是将单元质量平均分配到每个节点自由度。因此:
单元总质量为:

因此,单元质量矩阵为:


等效单元节点力
类似C3D4单元,针对热载荷,体积力(N/m^3),作用在单元面1的面力N/m*m的等效节点力公式子为:

静力分析问题公式
由C3D8组成的系统的静力分析问题,可以归结为求解下列公式,可以得到节点位移\(\{Q\}_{N\times1}\):
\[
\sum_i^{el\ num} \{K^e \}_{N \times N}\{Q\}_{N \times 1}=\sum_i^{el\ num} P^e_{N \times 1}
\]
动力分析公式,特征值问题见C3D4单元
BF7b6XvjXpKHmT9ZuQu7TA==;gZQXLhn15h1kitPuUS7sUA==
lX4zs6+enENT3dEOkelBCQ==;4oPizeu8DxnrbzaKOmVvI68W3SxtN1RY9JZyczZKxffyHvRi/wtEPCwYILx3UhZJWbEPf/Z++aovDBjbvtMJYNzcs8A6r9D63M2bWUsi/8mXLZOvP9SyDbWaSqGP3F6nepAodFGO85Iz+r8G2jAscObh7x0CgdOIZXj1Kh9RYWCX0cR5/96a8YXoMqykQ84RK/MislTIaVtikeQ2Se6+cU4Ij8UcH56GNZE1UT9wEsoBF4wEsM5iT4DkBHrxPeGqgDCe3N+D+5nRcGkqy+w6BmrwMB7DwitYN7Y7MNWvH4QEtDLfU1qCXmQlwvOQx8bJRXtAtpWGf4m3Rs0kHHlcsUShmt93Qqgy2oYTRWYYCYtiWc/7L1k1KDAcCa++aMYy4TgY0tkC1ye87rVGne+D6Y9sxknylL2JZJDmOkhXvaGSGD5fEp33jprpwjtRyRKUcPYzYRLzTvuMQlAsF+XK0GBdvA2/buVKXZIqNzfHKFlEbpGwkhpJwl01+cOctD8bYDuKM0t2dQ+wpYTaZlqnWdhoe4eQp0qQJz7yInW9TlRy8mFhOZsdEAhGd+TlbHMN/6xg0+/rv/jqDe+D91mAySPB+a3NnfwLTkcl6gPdS0rVGtcD4hdWaXIricjUnqippPfT5NgF6i4uoBXpjSkiwpn/c+7NWnlwQqDJaByEC3f4bvm5ibh2f8RpfRJd+/xQpmZ2SF6ebSe/mi6IJ37CTdWE7ijczwPPPvPwoTPPcc8jLhuruVxxbVfFyREu7mVpeK5Z0CEcyPhF7F9tRoAsxo37ZkGVdT4ZBR2q2t7mQ4VlV1DJJwQMVHIEqx2mTFTJGcFRrvSgbmXorPlzKEMe+UqFg2FMunz4rt4Up/oAhVbK6xMDna13Z1teCNZuQGz2uhF8gsu36mwz/fqqV03NWJ5YNDFs2EfnMy9/KLaLxGcwMCg9KFm6AfUCsAqjP1dbMY74/w0osKcZOZEUQaE/4UQVaxKfBx8A+nR7BSOB8PNJU5KlvyvO0BBaTlMNTBxo7TFfIZMqOcYblubGjn3mUX/6D94RMMltsgPzgrfY9CHTBpLzMiGHvTg2a/0VmK3vCdtPZQJTaZDTiYCI1p7d7YIvwg2Ph9YDaFsWSPaL1/JtOU0dMq/xNh7kc8bNKHNdKxtYt3jDkxYigvmKB7P5J/S/3IH3xp/E4tYxSHEs9ej5tafqt46Ilc74YLIuD/UzOjTVFpC9fJr4AbO8RcFRWIFDKSCwMabc5BP5eu67oehDKEkzuz8wafTbJUpgpmHf4dGUok9Gi74iqnvr8YwBCYMZtMp2CVpEqiGJs1BwVvosnUBHb4TvSz0DFxG4q1qZvDCSkPcA19ZhzMZmYNhrKcqw/hqkboC63yhcaFYnpjNK2n5usn03XnNMLC1c+ys/rip+OPRD6L31aiZW7Y3K3nGrGU7G3BTHoLktCerfxQNkJkVyERStVkRwZW2pxIjzvj5cQHS1hya5NQFINWQbWOTyRkrFd+SZs6xt2FF9zs99srQVRQGwOI0WX0zh2Ofv61lh6UyDMGECi9helBdso3BHUZpAohgWwQ97Ha4WIrKLxe6NJEbdFYyS9JW669TCx07mJbzK3NXkyJK1EziG/ZGOOSxuIFIL9+6Om9UaTmQ+w7IxDmFREnm7It9u4VRlsAUjF487IGCX6/9gXad49PYZrpEnBCFVt0dYggAn7FEmBbdR9w+R3AMnQhsthDk2rj0mJkQHtMUvzYBQszNSWJ8vrpFgOToeueeepPQkfenh8WXbNCS3iJzuC5dm4fHxX4SluIy84h+JoZhJFPkX17uCkXjMfDo68QHjKtqQ+g2C44pan3HZ+Px1m09eqGy/H3FFmAc6+fMy7I6/p2zEzVW6WXUf5qo7Svg0sR/1ccDOJ4z9npqgHiTwt9TpzGV7V1OYJmySrxyphA32ElNNGcnze/mlhzFjfza2l8QuhfC294zGKv3m4Qpm5T9HxWqHKMSQFQdor0LE88Y8LrXmwEpMiLIfE5QlPB8BbFZhzbOTSQJbjXJ/c10mgRicgBmZxtw7rsnLufrNC1HHUVuViGSHwD2l9WDYBUO2kSq6qIeGl20IXYvX+l5oujkUkNy75f1euSj/L79mTnSmz9Q7tzoy8+HrCdn8zkRT/xd7UpBGi+rW4r1PCGO6JJzhlkZTpMaXUJFVWOpvzgB7E9W/zXeO0Sw7y3Gd5ByyKuCIeujY8fP/519TSiudoKxGj1Imb3NJY1zSuRjuWjkd1c0dZw6k8Zbxcli2TA3mlw/R8K/aiCdQ/+NEpKQokMte81dAvAJXk6utm04ZutcC5waZmquGv+9sa+aMr6euev9tAFChOO3CEsQUztFk58mtUfCnW6B6S/gPX9L2mmFpsOelkyiYZoOWBIfAciXHBXoI8v8780fxMsgzqksc3uj8QTGgcj7gm77N1kflWs6Fyl8se9Mr4cNgZp4gIFBl5kigedM=